New ent-Abietanoids from Isodon rubescens by Quan-Bin Han^a), Rong-Tao Li^a), Ji-Xia Zhang^b), and Han-Dong Sun*^a) ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P.R. China (Phone: +86-871-5223251; fax: +86-871-5216343; e-mail: hdsun@mail.kib.ac.cn or han_dongsun@hotmail.com) b) Department of Chemistry, Xinxiang Medical College, Xinxiang 453000, Henan, P.R. China Six new *ent*-abietane diterpenoids, rubescensins I-M (1–5) and P (6), along with two related acetonide derivatives (7 and 8), were isolated from *Isodon rubescens*. Their structures were elucidated by detailed spectroscopic analysis. Compound 5 is the first N-containing diterpenoid from the genus *Isodon*, exhibiting notable cytotoxicity against human tumor K562 cells. **Introduction.** – In our previous papers [1][2], 20 tetracyclic *ent*-kaurane diterpenoids were reported from *Isodon rubescens* (Hemsl.) Hara. Our continuing search for biologically active principles from this plant, collected in two different prefectures of the Henan Province of China, has now led to the isolation of six new *ent*-abietane diterpenoids named rubescensins I-M (1-5) and P (6), together with two related acetonide derivatives (7 and 8). In this paper, we report the isolation and structural elucidation of these new compounds. **Results and Discussion.** – Structure Elucidation. Rubescensin I (1), obtained as an amorphous powder, gave rise to a molecular-ion peak at m/z 336.2315 in the HR-EI mass spectrum, consistent with the molecular formula $C_{20}H_{32}O_4$. Careful analysis of the 1H - and ^{13}C -NMR data (*Table 1*) indicated 1 to be an *ent*-abietanoid similar to laxiflorin O (9) reported from *I. eriocalyx* var. *laxiflora* [3]. Compound 1 was elucidated as $(3\alpha,14\beta)$ -ent-abieta-7,15(17)-diene-3,4,16,18-tetraol by extensive analysis of its 2D-NMR spectra, and by comparison of the 1D-NMR spectra of 1 and 9. In the ¹³C-NMR spectrum of **1**, signals of two olefinic quaternary C-atoms (δ 141.2 and 152.8), an olefinic CH₂ (110.8), an olefinic CH (124.3), two O-CH₂ (66.1, 64.6), five CH₂ (38.1, 27.9, 25.7, 23.9, 23.4), two O-CH (74.8, 74.1), three CH (48.5, 47.6, 43.0), two nonoxygenated quaternary C-atoms (43.3, 35.1), and two Me groups (13.0, 15.9) were present. Thus, compound **1** was lacking one nonoxygenated quaternary C-atom relative to the classical *ent*-kaurane skeleton, suggesting **1** to be a tricylic diterpenoid. Comparison of the ¹H- and ¹³C-NMR spectra of **1** and the known tricylic *ent*-abietanoid laxiflorin O (**9**) [3] revealed great similarities, except for one more OH group at C(14) of **1**. Thus, **1** can be regarded as an *ent*-abietane diterpenoid corresponding to 14-hydroxylaxiflorin O. This was further supported by positive $[\alpha]_D$ values for **1** and **9**. The above assignment was also corroborated by HMBC experiments (Fig.~1,a). The $CH_2(17) = C(15)$ moiety was confirmed by correlations of $CH_2(17)$ ($\delta~5.57$ and 5.28) with C(13) ($\delta~47.6$) and C(16) ($\delta~64.6$). The other C=C bond was assigned to C(7) and C(8) on the ground of the observed HMBC correlation of H-C(7) at $\delta_H~5.66$ with C(5) at $\delta_C~43.0$ and C(9) at $\delta_C~48.5$. Due to the presence of the HMBC correlations of H-C(3) with C(1), C(5), and C(18), of H-C(14) with C(7), C(9), and C(15), of $CH_2(16)$ with C(13) and C(17), and of $CH_2(18)$ with C(3), C(5), and C(19), the four OH groups were placed at C(3), C(14), C(16), and C(18), respectively (Table~1 and Fig.~1,a). The relative configuration of **1** was derived by a ROESY experiment (*Fig. 1,b*). The α -orientation of the 3-OH and the β -orientation of the 14-OH groups were apparent Table 1. ${}^{1}H$ - and/or ${}^{13}C$ -NMR Data of Compounds 1, 2, 7, and 8. 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, J in Hz. Asterisks (*) mark overlapping signals. | | 1 | | 7 | 2 | 8 | | |---------------------|-----------------|------------------------------|-----------------|-----------------|---------------------------|-----------------| | | ¹³ C | ¹H | ¹³ C | ¹³ C | ¹ H | ¹³ C | | CH ₂ (1) | 38.1 (t) | 1.82, 1.18 (2m) | 38.2 (t) | 37.5 (t) | 1.79, 1.18 (2m) | 37.9 (t) | | $CH_2(2)$ | 27.9(t) | 1.92, 1.85 (2m) | 24.3 (t) | 28.8(t) | 1.89, 1.62 (2m) | 24.3 (t) | | H_{β} -C(3) | 74.1(d) | $4.14 \ (dd, J = 10.8, 4.9)$ | 77.4(d) | 73.1 (d) | 4.17 (dd, J = 10.8, 4.9) | 77.3 (d) | | C(4) | 43.3 (s) | = | 36.7 (s) | 42.7(s) | = | 36.6 (s) | | H_{β} -C(5) | 43.0(d) | 1.90* | 45.6(d) | 42.3(d) | 1.94* | 45.0(d) | | $CH_2(6)$ | 23.4(t) | 2.05 - 2.00* | 22.4(t) | 23.5(t) | 2.09 - 2.03* | 22.8(t) | | H-C(7) | 124.3 (d) | 5.66 (d, J = 2.1) | 123.2(d) | 129.5 (d) | 5.66 (d, J = 2.1) | 128.8(d) | | C(8) | 141.2(s) | _ | 141.5 (s) | 134.6 (s) | _ | 135.4 (s) | | H_{β} -(9) | 48.5(d) | 2.40* | 48.5(d) | 49.2 (d) | 2.05* | 49.5 (d) | | C(10) | 35.1(s) | _ | 35.1 (s) | 34.8 (s) | _ | 35.1 (s) | | $CH_2(11)$ | 23.9(t) | 1.75, 1.20 (2m) | 23.6 (t) | 23.7(t) | 1.93, 1.04 (2m) | 23.6 (t) | | $CH_2(12)$ | 25.7(t) | 2.20, 1.65 (2m) | 25.3(t) | 27.5(t) | 1.65, 1.42 (2m) | 28.9(t) | | H_a -C(13) | 47.6(d) | 2.50 (br. $d, J = 12.4$) | 47.3(d) | 45.8(d) | 2.41 (m) | 45.9 (d) | | H_a -C(14) | 74.8(d) | 4.58 (br. s) | 74.5(d) | 83.4 (d) | 4.18 (br. s) | 83.5 (d) | | C(15) | 152.8(s) | _ | 152.5(s) | 154.5(s) | _ | 154.6 (s) | | $CH_2(16)$ | 64.6(t) | 4.65, 4.56 (2d, J = 14.0) | 64.7(t) | 69.4(t) | 4.55, 4.26 (2d, J = 14.0) | 69.6 (t) | | $CH_2(17)$ | 110.8(t) | 5.57, 5.28 (2 br. s) | 110.7(t) | 102.9(t) | 5.01, 4.84 (2 br. s) | 103.2(t) | | $CH_2(18)$ | 66.1(t) | 4.10, 3.59 (2d, J = 10.8) | 72.2(t) | 67.1(t) | 4.06, 3.60 (2d, J = 10.8) | 72.1(t) | | Me - C(19) | 13.0 (q) | 1.15 (s) | 12.9(q) | 12.6(q) | 1.12 (s) | 12.7(q) | | Me-C(20) | 15.0(q) | 0.92(s) | 15.9(q) | 15.0(q) | 0.86(s) | 15.3(q) | | Me_2C-O | - | - | 99.0(s) | - | - | 99.0(s) | | | | | 30.2(q) | | | 30.2(q) | | | | | 19.4(q) | | | 19.4 (q) | Fig. 1. Key HMBC (H \rightarrow C) and ROESY correlations observed in 1 from the ROEs of $H_{\beta}-C(3)$ with both $H_{\beta}-C(5)$ and $CH_{2}(18)$, and of $H_{\alpha}-C(14)$ with both $H_{\alpha}-C(13)$ and H-C(7). Compound **1** showed an unprecedented color change on TLC plates (SiO₂) from green to red to purple to blue when being baked at 200° after dipping in 10% ethanolic H₂SO₄. So did rubescensin J (**2**), having the molecular formula C₂₀H₃₀O₃, as determined by HR-EI-MS (m/z 318.2193; calc. 318.2195). Comparison of the ¹H-, ¹³C-, and DEPT-NMR data of **2** and **1** revealed that **2** was also an *ent*-abietanoid, differing from **1** only at C(14) and C(16). The clear HMBCs correlations between H–C(14) ($\delta_{\rm H}$ 4.18) and C(16) ($\delta_{\rm C}$ 69.4), and between CH₂(16) ($\delta_{\rm H}$ 4.55 and 4.26) and C(14) indicated the presence of an O-bridge between C(14) and C(16), causing significant downfield chemical shifts of C(14) ($\delta_{\rm C}$ 83.4) and C(16) ($\delta_{\rm C}$ 69.4). This was consistent with a molecular weight being 18 amu lower than that of **1** (condensation of C(14)—OH and C(16)—OH under loss of H₂O). Thus, **2** was elucidated as (3 α)-14,16-epoxy-ent-abieta-7,15(17)-diene-3,18-diol. Rubescensin K (3) was also an *ent*-abietanoid, as indicated by the same characteristic color changes in the TLC test. It exhibited an odd molecular-ion peak at m/z 429 in the EI mass spectrum, and an $[M+1]^+$ signal at m/z 430 in the FAB mass spectrum, suggesting that it might contain a N-atom. The HR-EI-MS data (M^+ signal at m/z 429.2871) verified this assumption, giving rise to the molecular formula $C_{26}H_{39}NO_4$. On the basis of careful analysis of the $^1H^-$, $^1SC^-$, and 2D-NMR data ($Table\ 2$), compound 3 was identified as 3α , (3α , 14β)-3, 18^- [[(1S)-4-(acetylamino)butane-1,1-diyl]dioxy}-14,16-epoxy-*ent*-abieta-7,15(17)-diene, and was named rubescensin K, which is the first N-containing diterpenoid isolated from *Isodon* plants. Table 2. ^{1}H - and ^{13}C -NMR Data of Compounds 3, 4, and 6. 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, J in Hz. Asterisks (*) mark overlapping signals. | | 3 | | 4 | | 6 | | |---------------------|-----------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------| | | ¹³ C | ¹ H | ¹³ C | ¹ H | ¹³ C | $^{1}\mathrm{H}$ | | CH ₂ (1) | 37.9 (t) | 1.73, 1.05 (2m) | 37.6 (t) | 1.68, 1.00 (2m) | 37.1 (t) | 1.63, 1.25 (2m) | | $CH_{2}(2)$ | 24.2(t) | 1.70 – 1.18* | 29.0(t) | 1.81, 1.52 (2m) | 27.9(t) | 1.90* | | $H_{\beta}-C(3)$ | 85.0(d) | 3.13 (m) | 73.0(d) | 4.11* | 74.9(d) | 4.23(m) | | C(4) | 36.5 (s) | _ | 43.1 (s) | _ | 42.6(s) | _ | | $H_{\beta}-C(5)$ | 45.1 (d) | 1.00* | 42.8(d) | 1.83* | 40.9(d) | 2.47 | | , , , | | | | | | (dd, J = 13.0, 2.0) | | $CH_{2}(6)$ | 22.9(t) | 1.70 - 1.18* | 23.8(t) | 2.07, 1.95 (2m) | 30.5(t) | 2.09 (d, J = 13.0) | | | | | | | | 1.77 (m) | | H-C(7) | 128.8(d) | 5.78 (d, J = 2.0) | 129.8 (d) | 5.79 (d, J = 2.2) | 72.3(d) | 4.49 (br. s) | | C(8) | 135.5 (s) | _ | 134.5(s) | _ | 141.8 (s) | _ | | $H_{\beta}-C(9)$ | 49.4 (d) | 1.93* | 49.1 (d) | 1.90* | 46.5 (d) | 2.58 (br. s) | | C(10) | 35.1(s) | _ | 35.1(s) | _ | 38.7(s) | _ | | $CH_2(11)$ | 23.6(t) | 1.70 - 1.18* | 23.9(t) | 1.87, 0.97 (2m) | 22.6(t) | 1.70, 1.36 (2m) | | $CH_2(12)$ | 24.2(t) | 1.70 - 1.18* | 27.5(t) | 1.57, 1.36 (2m) | 29.7(t) | 1.92, 1.32 (2 <i>m</i>) | | H_a -C(13) | 45.9 (d) | 2.37(m) | 46.1 (t) | 2.38 (m) | 39.4 (d) | 2.89(m) | | H-C(14) | 83.5 (d) | $4.14 (d, J = 4.0, H_a)$ | 83.6 (d) | $4.15 (d, J = 4.0, H_a)$ | 128.7(d) | 5.89 (br. s) | | C(15) | 154.6 (s) | _ | 154.9(s) | _ | 155.1 (s) | _ | | $CH_2(16)$ | 69.6 (t) | 4.53, 4.23 | 69.6 (t) | 4.53, 4.25 | 64.2 (t) | 4.41* | | | | (2d, J = 13.2) | | (2d, J = 14.0) | | | | $CH_2(17)$ | 103.2(t) | 5.03, 4.84 (2 br. s) | 103.2(t) | 5.00, 4.85 (2 br. s) | 107.8(t) | 5.43, 4.99 (2 br. s) | | $CH_2(18)$ | 77.9(t) | 3.69, 3.08 | 76.0(t) | 4.21, 3.53 | 69.4 (t) | 4.17, 3.82 | | | | (2d, J = 10.8) | | (2d, J = 10.4) | | (2d, J = 10.4) | | Me-C(19) | 13.6(q) | 1.17 (s) | 12.8(q) | 1.05(s) | 12.8 (q) | 1.18 (s) | | Me-C(20) | 15.3(q) | 0.73(s) | 15.2(q) | 0.78(s) | 14.6 (q) | 0.90(s) | | H-C(1') | 102.6 (d) | 4.67 (br. s) | 105.8(d) | 4.84 (d, J = 7.6) | _ | _ | | H-C(2') | 32.8(t) | 1.90-1.78 (2 H)* | 74.9(d) | 4.04 (dd, J = 6.4, 2.0) | _ | _ | | H - C(3') | 24.7(t) | 1.90-1.78 (2 H)* | 78.7(d) | 4.24* | _ | _ | | H-C(4') | 39.6 (t) | 3.48 (2 H)* | 72.2(d) | 4.13* | _ | _ | | H - C(5') | _ | _ | 78.6(d) | 4.02 (m) | _ | _ | | $CH_2(6')$ | _ | _ | 63.2 (t) | 4.62 (d, J = 11.0), | _ | _ | | | | | | 4.32 (dd, J = 11.0, 8.0) | | | | NHAc | 169.8 (s) | 8.44 (br. s, NH) | _ | _ | _ | _ | | | 23.1 (q) | 1.99 (s) | | | | | Examination of the 1 H- and 13 C-NMR data of **3** revealed that the molecule consisted of two portions, one of which closely resembled **2**, except for the downfield-shifted C(3) and C(18) 13 C-NMR signals at $\delta_{\rm C}$ 85.0 and 77.9, respectively. The other portion contained one N- and six C-atoms, including one Me ($\delta_{\rm C}$ 23.1), three CH₂ (24.7, 32.8, 39.6), a C=O group (169.8), and one highly oxygenated CH (102.6). The CH₂(4') group resonating at $\delta_{\rm C}$ 39.6 and $\delta_{\rm H}$ 3.48 (m) was linked with an acetamide NH ($\delta_{\rm H}$ 8.44), as deduced from a 1 H, 1 H-COSY experiment, as well as from the HMBC correlations (Fig. 2) of both the CH₂(4') ($\delta_{\rm H}$ 3.48) and a Me group ($\delta_{\rm H}$ 1.99) with the C=O C-atom ($\delta_{\rm C}$ 169.8). H–C(1') ($\delta_{\rm C}$ 102.6; $\delta_{\rm H}$ 4.67) was linked with C(3) and C(18) according to a HMBC experiment. In the 1 H, 1 H-COSY spectrum, the overlapping CH₂(2') and CH₂(3') resonances ($\delta_{\rm H}$ 1.90–1.78) exhibited correlations with the H-atoms of CH(1') and CH₂(4') ($\delta_{\rm H}$ 3.48), respectively, suggesting that C(1') to C(4') were anchored in a line, as confirmed by the HMBC experiment (Fig. 2). The H–C(1') H-atom was involved in NOEs with H_β–C(3) and CH₂(18), confirming β -configuration at C(1'). Fig. 2. Key HMBC $(H \rightarrow C)$ correlations observed in 3 Rubescensin L (4), a white amorphous powder, gave rise to a molecular-ion peak at m/z 480 in the EI mass spectrum, in accord with the molecular formula $C_{26}H_{40}O_8$, as determined by HR-EI-MS (480.2708 (M^+ ; calc. 480.2723)). Analysis of the 1H - and ^{13}C -NMR data indicated that 4 was a glucoside of 2. The significant downfield shift of C(18) (δ_C 76.0) of 4, in combination with the 1H - and ^{13}C -NMR data and coupling patterns of the glucose moiety with reference data [4], suggested that a β -D-glucose unit was linked at C(18), which was confirmed by HMBCs correlations between CH₂(18) (δ_H 4.21 and 3.53) and C(1') (δ_C 105.8), and between H–C(1') (δ_H 4.84) and C(18). Therefore, 4 was established as the 18-O- β -D-glycopyranoside of 2. Rubescensin M (5) was obtained as a white amorphous powder. FAB-MS exhibited an $[M+1]^+$ peak at m/z 683, consistent with the molecular formula $C_{40}H_{58}O_9$, as determined by both HR-FAB-MS and 1H - and ^{13}C -NMR ($Table\ 3$). Analysis of the spectral data, including 2D-NMR, indicated that 5 was composed of two diterpene moieties (partial structures 5a and 5b), as shown in $Fig.\ 3$. Thereby, based on NMR, 5a was identical with 2, and 5b was suggested to be a 7,20-epoxy-ent-kaurane due to the characteristic signals of three nonoxygenated quaternary C-atoms [C(4'), C(8'), C(10') at $\delta_C\ 33.6$, 52.4, 43.5, resp.], two Me groups at quaternary C-atoms [C(18') and C(19') at $\delta_C\ 33.5$ and 22.3, resp.], a hemiketal C-atom [C(7') at $\delta_C\ 101.5$], and three nonoxygenated CH groups [C(5'), C(9'), C(13') at $\delta_C\ 56.7$, 45.0, 46.4, resp.]. Further comparison of the 1H - and ^{13}C -NMR data of 5b and rabdoternins B and F [5][6], two known 7,20-epoxy-ent-kauranoids that had been isolated as well, suggested that 5b was a 7α ,20-epoxy-ent-kaur-16-ene-1,6,7,14,15-pentaol, strongly resembling rabdoternin B, except for the oxygenation pattern of C(20), and differing from rabdoternin F only at C(15). Furthermore, it was deduced that **5a** and **5b** were linked together by an oxy bridge between C(18) ($\delta_{\rm C}$ 71.7) and C(20') ($\delta_{\rm C}$ 101.8) on the basis of HMBC correlations between H–C(20) and C(18), as well as between CH₂(18) and C(20') (Fig. 3). Table 3. ${}^{I}H$ - and ${}^{I3}C$ -NMR Data of Compound 5. Note that ${\bf 5a}$ and ${\bf 5b}$ are ether-bridged fragment structures (see chemical formula). 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, J in Hz. Asterisks (*) mark overlapping signals. | | 5a | | 5b | | | |---------------------|-----------------|---------------------------|----------------------|-----------------|-------------------------| | | ¹³ C | ¹ H | | ¹³ C | ¹ H | | CH ₂ (1) | 37.9 (t) | 1.78, 1.11 (2m) | H_{β} -C(1') | 75.9 (d) | 3.66 (dd, J = 9.6, 4.0) | | $CH_2(2)$ | 29.1(t) | 1.91*, 1.65* | $CH_{2}(2')$ | 31.0(t) | 1.91*, 1.75* | | H_{β} -C(3) | 73.4(d) | 3.95* | $CH_2(3')$ | 39.3 (t) | 1.36*, 1.29* | | C(4) | 42.3(s) | _ | C(4') | 33.6 (s) | - | | $H_{\beta}-C(5)$ | 42.5(d) | 2.09 (dd, J = 9.6, 2.4) | $H_{\beta}-C(5')$ | 56.7(d) | 1.62 (d, J = 5.0) | | $CH_{2}(6)$ | 23.7(t) | 2.52, 2.00 (2m) | $H_{\alpha}-C(6')$ | 71.6(d) | 4.11 (d, J = 5.0) | | H-C(7) | 130.8(d) | 5.59 (m) | C(7') | 101.5(s) | _ | | C(8) | 133.7(s) | _ | C(8') | 52.4 (s) | _ | | $H_{\beta}-C(9)$ | 50.5(d) | 1.97* | $H_{\beta}-C(9')$ | 45.0(d) | 2.89(m) | | C(10) | 34.9 (s) | _ | C(10') | 43.5 (s) | _ | | $CH_2(11)$ | 23.3(t) | 1.86*, 1.00* | $CH_2(11')$ | 21.6 (t) | 2.67, 2.24 (2m) | | $CH_2(12)$ | 27.8(t) | 1.60, 1.26 (2m) | $CH_2(12')$ | 33.9(t) | 2.55(m), 1.74* | | H_a -C(13) | 45.3(d) | 2.39 (m) | H_{α} -C(13') | 46.4(d) | 2.93 (d, J = 7.2) | | H_a -C(14) | 83.5(d) | 4.12* | H_{α} -C(14') | 75.9(d) | 5.16(s) | | C(15) | 153.7 (s) | _ | C(15') | 73.1(d) | 5.65(s) | | $CH_2(16)$ | 69.2(t) | 4.45, 4.13 (2d, J = 10.4) | $CH_2(16')$ | 161.2 (s) | _ | | $CH_2(17)$ | 103.8(t) | 5.02, 4.85 (2 br. s) | $CH_2(17')$ | 109.0(t) | 5.65, 5.37 (2 br. s) | | $CH_2(18)$ | 71.7(t) | 3.96, 3.87 (2d, J = 7.0) | Me - C(18') | 33.5(q) | 1.16 (s) | | Me-C(19) | 12.5(q) | 1.02(s) | Me-C(19') | 22.3(q) | 1.05(s) | | Me-C(20) | 15.0 (q) | 0.81(s) | H-C(20') | $101.8 \; (d)$ | 5.76 (s) | Fig. 3. Key HMBC ($H \rightarrow C$) correlations observed in 5 The relative configuration of **5** was confirmed by a ROESY experiments (*Fig. 4*). The orientations of the OH groups at C(1'), C(6'), and C(14') were shown to be α , β , and β , respectively, as deduced from the NOEs between H_{β}-C(1') ($\delta_{\rm H}$ 3.66) and H_{β}-C(5') ($\delta_{\rm H}$ 1.62), and between H_{β}-C(9') ($\delta_{\rm H}$ 2.89) and H_{α}-C(6') ($\delta_{\rm H}$ 4.11) and Me(19') ($\delta_{\rm H}$ 1.05), as well as between H_{α}-C(14') ($\delta_{\rm H}$ 5.16) and H_{α}-C(11') ($\delta_{\rm H}$ 2.67), respectively. However, there was no NOE for H-C(15'), suggesting an α -orientation, which was confirmed by the steric effect between H_{β}-C(9') and HO-C(15') indicated by an upfield shift of C(9') ($\delta_{\rm C}$ 45.0). Finally, the relative (*S*)-configuration at C(20') was determined by the key NOE between H-C(20') and Me(19'). There were also NOEs between H-C(20') and H_{β}-C(3), and between H-C(20') and CH₂(18), confirming the linkage between the two moieties of **5**. Fig. 4. Key ROESY correlations observed in 5 Rubescensin P (6), an amorphous powder, had the same molecular formula $(C_{20}H_{32}O_4)$ as **1**, as revealed by HR-EI-MS. Comparison of the 13 C-NMR data of **6** (*Table 2*) and **1** (*Table 1*) indicated that they both had two OCH₂, two OCH, two olefinic quaternary C-atoms, an olefinic CH, and an olefinic CH₂, with differences in rings B and C, which were detailed by HMBC correlations between H–C(14) (δ_H 5.89) and both C(15) (δ_C 155.1) and C(9) (δ_C 46.5) (*Fig.* 5), suggesting the presence of a C=C bond between C(8) (δ_C 141.8) and C(14) (δ_C 128.7). The β -orientation of HO–C(7) was indicated by the HMBC correlations between H_a–C(7) and both C(5) and C(9), and by the NOE of H_a–C(7) and H–C(14). Thus, **6** was determined to be (3 α ,7 β)-ent-abieta-8(14),15(17)-diene-3,7,16,18-tetraol. Fig. 5. Key HMBC ($H \rightarrow C$) correlations observed in 6 The 13 C-NMR spectrum of **7** closely resembled that of **1**, except for three extra C-atom signals at $\delta_{\rm C}$ 99.0, 30.2, and 19.4, suggesting that **7** was an acetonide derivative of **1**. The acetonide group was located between C(3) and C(18), as indicated by HMBC correlations between both H–C(3) ($\delta_{\rm H}$ 3.50) and CH₂(18) ($\delta_{\rm H}$ 3.48 and 3.26) with the quaternary C-atom ($\delta_{\rm C}$ 99.0) of the Me₂C group. The relative configurations at C(3) and C(14) were assigned by the NOEs in the ROESY spectrum of **7**. Therefore, **7** was identified as (3α ,14 β)-3,18-[(1-methylethane-1,1-diyl)dioxy]-*ent*-abieta-7,15(17)-diene-14,16-diol; in the same way, compound **8**¹) was elucidated as the acetonide of **2**. The isolation of *ent*-abietanoids from an *Isodon* plant, a genus notable as a rich source of tetracyclic *ent*-kauranoids [8], may suggest a potential biogenesis path from *ent*-kaurane to *ent*-abietane, because these *ent*-abietanoids, without the key H_{α} –C(8) of the *ent*-abietane skeleton, could also be regarded as 8,15-*seco-ent*-kauranoids. Cytotoxicity. The new compounds 1-8 were tested for their cytotoxity against human-tumor K562 cells by a method previously described [7]. Only compound 3 exhibited a significant inhibitory effect, with an IC_{50} value of 0.49 µg/ml, which is in the range of cisplatin (1.44 µg/ml). ## **Experimental Part** General. Optical rotations: JASCO DIP-370 digital polarimeter. UV Spectra: Shimadzu UV-210A spectrometer; λ_{max} in nm, (log ε). IR Spectra: Bio-Rad FtS-135 spectrometer; KBr pellets; in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker AM-400 and DRX-500 spectrometers; in C_5D_5N ; δ in ppm rel. to SiMe₄ as internal standard, J in Hz. Mass spectra: VG Autospec-3000 spectrometer (70 eV for EI); in m/z (rel. %). Plant Material. Plants of Isodon rubescens were collected in the Jiyuan and Hebi Prefectures in August 1999 and August 2000, resp., Henan Province of China. They were identified by Prof. Zhong-Wen Lin. Voucher specimens (KIB-99-10-13 Lin and KIB-2000-8 Lin) were deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Science. Extraction and Isolation. a) Plant Material from the Jiyuan Prefecture. The air-dried leaves (13 kg) of *I. rubescens* from the Jiyuan Prefecture were extracted with 70% aq. acetone at r.t. overnight (3×), and the extract was filtered. The filtrate was evaporated, and the resulting residue was partitioned between H₂O and AcOEt. The AcOEt fraction (424 g of dry extract) was purified by column chromatography (CC) (3 kg of SiO₂ (100–200 mesh); CHCl₃/acetone 1:0 \rightarrow 0:1), affording Fractions *I-IX*. After repeated CC (SiO₂; gradient mixtures of CHCl₃/MeOH), Fraction VII afforded 1 (150 mg), 7 (14 mg), and 2 (110 mg). In the same way, 3 (8 mg), 4 (5 mg), and 5 (6 mg) were isolated from Fraction VIII. b) Plant Material from the Hebi Prefecture. The air-dried leaves (10 kg) of I. rubescens from the Hebi Prefecture were extracted with 70% aq. acetone at r.t. overnight (3×), and the extract was filtered. The filtrate was evaporated, and the resulting residue was partitioned between H₂O and AcOEt. The AcOEt fraction (400 g of dry extract) was purified by CC (SiO₂; CHCl₃; CHCl₃/acetone 9:1, 8:2, 7:3, 6:4; acetone) to afford Fractions I-VI. Compounds 1 (50 mg), 7 (6 mg), 2 (80 mg), and 8 (20 mg) were isolated from Fraction V, and compounds 4 (20 mg) and 6 (23 mg) were obtained from Fraction VI by repeated CC (SiO₂; gradient mixtures of CHCl₃/MeOH), followed by repeated prep. TLC (SiO₂; CHCl₃/MeOH 10:1). $(3\alpha,14\beta)$ -ent-Abieta-7,15(17)-diene-3,14,16,18-tetraol (Rubescensin I; 1). White amorphous powder. [α] $_{\rm D}^{\rm 21}$ = +38.9 (c = 0.32, MeOH). UV (MeOH): 203 (4.74). IR (KBr): 3417, 2933, 2870, 1385, 1087, 1056, 917. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: see *Table 1*. EI-MS: 336 (65, M^+), 318 (80), 300 (85), 282 (42), 269 (54), 167 (90), 149 (100). HR-EI-MS: 336.2315 (M^+ , $C_{\rm 20}$ H₃₂O $_{\rm 4}^+$; calc.: 336.2301). $(3\alpha,14\beta)$ -14,16-Epoxy-ent-abieta-7,15(17)-diene-3,18-diol (Rubescensin J; 2). White amorphous powder. [α] $_{0}^{26} = -24.8$ (c = 0.30, MeOH). UV (MeOH): 204 (3.77). IR (KBr): 3418, 2935, 2863, 1733, 1712, 1559, 1226, Compounds 7 and 8 may well be artifacts of 1 and 2, respectively, formed during acetone extraction and purification. 1071, 1031, 950. $^1\text{H-}$ and $^{13}\text{C-NMR}$: see *Table I*. EI-MS: 318 (10, M^+), 300 (6), 269 (8), 241 (5), 162 (31), 149 (100). HR-EI-MS: 318.2193 (M^+ , $C_{20}H_{30}O_3^+$; calc.: 318.2195). $(3a,14\beta)$ -3,18-{[(1S)-4-(Acetylamino)butane-1,1-diyl]dioxy}-14,16-epoxy-ent-abieta-7,15(17)-diene (Rubescensin K; **3**). White amorphous powder. [a] $_{\rm D}^{20}$ = +7.2 (c = 1.25, AcOEt). UV (MeOH): 204 (4.29). IR (KBr): 3416, 2933, 2856, 1652, 1645, 1558, 1444, 1382, 1114, 1026. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: see *Table 2*. EI-MS: 429 (10, M^+), 386 (3), 355 (2), 329 (8), 300 (8), 284 (9), 149 (100). FAB-MS: 430 ([M+1] $^+$). HR-EI-MS: 429.2871 (M^+ , C_{29} H₃₉NO $_4^+$; calc. 429.2879), $(3a,14\beta)$ -14,16-Epoxy-18- $[(\beta$ -D-glucopyranosyl)oxy]-ent-abieta-7,15(17)-dien-3-ol (Rubescensin L; **4**). White amorphous powder. [a] $_0^{20} = -35.7$ (c = 0.224, pyridine). UV (MeOH): 205 (3.91). IR (KBr): 3441, 3410, 2933, 2861, 1662, 1635, 1079, 1023. 1 H- and 1 C-NMR: see *Table 2*. EI-MS: 480 (4, M^+), 462 (8), 444 (3), 329 (60), 318 (62), 300 (80), 282 (82), 269 (54), 149 (100). HR-EI-MS: 480.2708 (M^+ , $C_{26}H_{40}O_8^+$; calc.: 480.2723). $(1\alpha,6\beta,7\beta,14\beta,15\beta,20R)$ - $7\alpha,20$ -Epoxy-20- $[((3\alpha,14\beta)$ -14,16-epoxy-3-hydroxy-ent-abieta-7,15(17)-dien-18-yl)oxy]-ent-kaur-16-ene-1,6,7,14,15-pentaol (Rubescensin M; **5**). White amorphous powder. [α] $_{0}^{20}$ = -22.5 (c = 0.355, MeOH). UV (MeOH): 205 (4.34). IR (KBr): 3417, 2932, 2863, 1357, 1253, 1171, 1087, 1017, 981, 896. 1 H-and 13 C-NMR: see Table 3. FAB-MS: 683 ([M + 1] $^{+}$), 365 ([M_{Sb} - H $_{2}$ O + 1] $^{+}$). HR-FAB-MS: 683.4137 ([M + H] $^{+}$, C₄₀H $_{50}$ O $_{0}^{+}$; calc.: 683.4159). $(3\alpha,7\beta)$ -ent-Abieta-8(14),15(17)-diene-3,7,16,18-tetraol (Rubescensin P; 6). White amorphous powder. [α] $_{D}^{D7}$ = +72.9 (c = 0.29, MeOH). UV (MeOH): 204 (3.87). IR (KBr): 3291, 2936, 2863, 1387, 1307, 1052. 1 H- and 13 C-NMR: see *Table 2*. EI-MS: 336 (1, M^{+}), 318 (18), 300 (8), 282 (3), 269 (6), 251 (4), 241 (20), 162 (20), 149 (100). HR-EI-MS: 336.2312 (M^{+} , C_{20} H₃₂O $_{4}^{+}$; calc.: 336.2301). (3a,14β)-3,18-[(1-Methylethane-1,1-diyl)dioxy]-ent-abieta-7,15(17)-diene-14,16-diol (7). White amorphous powder. [a] $_D^{27}$ = +20.8 (c = 0.35, MeOH). UV (MeOH): 204 (3.39). IR (KBr): 3442, 2933, 2861, 1559, 1540, 1507, 1457, 1382, 1207, 1096. 1 H-NMR (C_5D_5 N, 400 MHz): 5.62 (br. s, H–C(7)); 5.57 (br. s, H_a–C(17)); 5.28 (br. s, H_b–C(17)); 4.65 (d, J = 14.0, H_a–C(16)); 4.57 (br. s, H_a–C(14)); 4.56 (d, J = 14.0, H_b–C(16)); 3.50 (overlapped, H_β–C(3)); 3.48 (d, J = 10.6, H_a–C(18)); 3.26 (d, J = 10.6, H_b–C(18)); 2.47 (br. d, J = 12.4, H_a–C(13)); 2.31 (overlapped, H_β–C(9)); 2.27, 1.65 (2m, CH₂(12)); 1.88–1.83 (overlapped, CH₂(6)); 1.82, 1.62 (2m, CH₂(2)); 1.78, 1.10 (2m, CH₂(1)); 1.70, 1.18 (2m, CH₂(11)); 1.21 (s, Me(19)); 0.98 (dd, J = 12.0, 4.4, H_β–C(5)); 0.81 (s, Me(20)). 13 C-NMR (C_5D_5 N, 100 MHz): see *Table 1*. EI-MS: 376 (70, M⁺), 361 (62), 358 (35), 343 (20), 340 (45), 300 (42), 283 (30), 282 (30), 265 (46), 232 (30), 167 (66), 149 (88), 55 (100). HR-EI-MS: 376.2621 (M⁺, $C_{23}H_{36}O_4^+$; calc.: 376.2614). $(3a,14\beta)-14,16\text{-}Epoxy-3,18\text{-}[(1\text{-}methylethane-1,1\text{-}diyl)dioxy]-ent-abieta-7,15(17)-diene-14,16\text{-}diol\ (\textbf{8}).}$ White amorphous powder. [a] $_{D}^{36}$ = +15.4 (c = 0.29, C $_{S}$ H $_{S}$ N). UV (MeOH): 204 (4.09). IR (KBr): 3441, 2986, 2929, 2856, 1383, 1209, 1098, 1027. 1 H-NMR (C $_{S}$ D $_{S}$ N, 400 MHz): 5.80 (br. s, H $_{-}$ C(7)); 5.02 (br. s, H $_{a}$ $_{-}$ C(17)); 4.54 (d, J = 14.0, H $_{a}$ $_{-}$ C(16)); 4.24 (d, J = 14.0, H $_{b}$ $_{-}$ C(16)); 4.16 (br. s, H $_{a}$ $_{-}$ C(14)); 3.50 (dd, J = 10.6, 4.8, H $_{\beta}$ $_{-}$ C(3)); 3.44 (d, J = 10.6, H $_{a}$ $_{-}$ C(18)); 3.32 (d, J = 10.6, H $_{b}$ $_{-}$ C(18)); 2.39 (m, H $_{a}$ $_{-}$ C(13)); 2.04 – 1.90 (overlapped, CH $_{2}$ (6)); 1.98 (overlapped, H $_{\beta}$ $_{-}$ C(9)); 1.84, 1.58 (d $_{-}$ M, CH $_{2}$ (2)); 1.72, 1.06 (d $_{-}$ M, CH $_{2}$ (1)); 1.93, 1.04 (d $_{-}$ M, CH $_{2}$ (11)); 1.60, 1.41 (d $_{-}$ M, CH $_{2}$ (12)); 1.22 (d $_{-}$ Me(19)); 1.06 (overlapped, H $_{\beta}$ $_{-}$ C(5)); 0.78 (d $_{-}$ Me(20)). d{13C-NMR (d{25D} $_{S}$ N, 100 MHz): see Table 1. EI-MS: 358 (68, d{+}), 343 (72), 330 (8), 300 (30), 283 (50), 265 (30), 149 (100). FAB-MS: 359 ([d{M}+1] $^{+}$). HR-EI-MS: 358.2521 (d{M}+ C $_{2}$ H $_{3}$ A $_{3}$ +; calc.: 358.2508). ## REFERENCES - [1] Q. B. Han, S. X. Mei, B. Jiang, A. H. Zhao, H. D. Sun, Chin. J. Org. Chem. 2003, 23, 270. - [2] Q. B. Han, B. Jiang, J. X. Zhang, Xue-Mei Niu, H. D. Sun, Helv. Chim. Acta 2003, 86, 773. - [3] X. M. Niu, S. H. Li, Q. S. Zhao, S. X. Mei, Z. W. Lin, H. D. Sun, Y. Lu, C. Wang, Q. T. Zheng, Helv. Chim. Acta 2003, 86, 299. - [4] Y. H. Gong, in 'The ¹³C-NMR Data of Natural Organic Compounds', Yunnan Sciences and Technology Press, Kunming, 1986, p. 398. - [5] Y. Takeda, K. Takeda, T. Fujita, H. D. Sun, Y. Minami, Chem. Pharm. Bull. 1990, 38, 439. - [6] Y. Takeda, K. Takeda, T. Fujita, H. D. Sun, Y. Minami, Phytochemistry 1994, 35, 1513. - [7] Q. B. Han, M. L. Li, S. H. Li, Y. K. Mou, Z. W. Lin, H. D. Sun, Chem. Pharm. Bull. 2003, 51, 790. - [8] Y. Takeda, H. Otsuka, Stud. Nat. Prod. Chem. 1995, 15, 111. Received November 19, 2003